17 research outputs found

    On the Spectral Gap of a Quantum Graph

    Full text link
    We consider the problem of finding universal bounds of "isoperimetric" or "isodiametric" type on the spectral gap of the Laplacian on a metric graph with natural boundary conditions at the vertices, in terms of various analytical and combinatorial properties of the graph: its total length, diameter, number of vertices and number of edges. We investigate which combinations of parameters are necessary to obtain non-trivial upper and lower bounds and obtain a number of sharp estimates in terms of these parameters. We also show that, in contrast to the Laplacian matrix on a combinatorial graph, no bound depending only on the diameter is possible. As a special case of our results on metric graphs, we deduce estimates for the normalised Laplacian matrix on combinatorial graphs which, surprisingly, are sometimes sharper than the ones obtained by purely combinatorial methods in the graph theoretical literature

    Uncertainty quantification for high frequency waves

    No full text
    We consider high frequency waves satisfying the scalar wave equationwith highly oscillatory initial data. The speed of propagation of the mediumas well as the phase and amplitude of the initial data is assumed to beuncertain, described by a finite number of independent random variables withknown probability distributions. We introduce quantities of interest (QoIs)aslocal averages of the squared modulus of the wave solution, or itsderivatives.The regularity of these QoIs in terms of the input random parameters and thewavelength is important for uncertainty quantification methods based oninterpolation in the stochastic space. In particular, the size of thederivativesshould be bounded and independent of the wavelength. In the contributedpapers, we show that the QoIs indeed have this property, despite the highlyoscillatory character of the waves.QC 20160510</p

    A Sparse Stochastic Collocation Technique for High-Frequency Wave Propagation with Uncertainty

    No full text
    QC 20160511</p

    Uncertainty quantification for high frequency waves

    No full text
    We consider high frequency waves satisfying the scalar wave equation with highly oscillatory initial data represented by a short wavelength Δ. The speed of propagation of the medium as well as the phase and amplitude of the initial data is assumed to be uncertain, described by a finite number of independent random variables with known probability distributions. We introduce quantities of interest (QoIs) as spatial and/or temporal averages of the squared modulus of the wave solution, or its derivatives. The main focus of this work is on fast computation of the statistics of those QoIs in the form of moments like the average and variance. They are difficult to obtain numerically by standard methods, as the cost grows rapidly with Δ−1 and the dimension of the stochastic space. We therefore propose a fast approximation method consisting of three techniques: the Gaussian beam method to approximate the wave solution, the numerical steepest descent method to compute the QoIs and the sparse stochastic collocation to evaluate the statistics. The Gaussian beam method is introduced to avoid the considerable cost of approximating the wave solution by direct methods. A Gaussian beam is an asymptotic solution to the wave equation localized around rays, bicharacteristics of the wave equation. This setup allows us to replace the PDE by a set of ODEs that can be solved independently of Δ. The computation of QoIs includes evaluations of highly oscillatory integrals. The idea of the numerical steepest descent method is to change the integration path in the complex plane such that the integrand is non-oscillatory along it. Standard quadrature methods can be then utilized. We construct such paths for our case and show error estimates for the integral approximation by the Gauss-Laguerre and Gauss-Hermite quadrature. Finally, the evaluation of statistical moments of the QoI may suffer from the curse of dimensionality.  The sparse grid collocation method introduces a framework where certain large group of points can be neglected while only slightly reducing the convergence rate. The regularity of the QoIs in terms of the input random parameters and the wavelength is important for the method to be efficient.  In particular, the size of the derivatives should be bounded independently of Δ. We show that the QoIs indeed have this property, despite the highly oscillatory character of the waves.Vi studerar högfrekventa lösningar till den skalĂ€ra vĂ„gekvationen med mycket oscillerande begynnelsedata, given av en kort vĂ„glĂ€ngd Δ. Utbredningshastigheten i mediumet samt fasen och amplituden av begynnelsedatan antas vara osĂ€kra, och kunna beskrivas av ett Ă€ndligt antal oberoende slumpvariabler med kĂ€nda sannolikhetsfördelningar. Vi definierar funktionaler som lokala medelvĂ€rden av beloppskvadraten av lösningen, eller av dess derivator. Huvudfokus i detta arbete ligger pĂ„ att snabbt berĂ€kna statistiska mĂ„tt som medelvĂ€rde och varians av dessa funktionaler. Kostnaden att berĂ€kna funktionalerna med direkta metoder vĂ€xer snabbt med Δ−1. DĂ€rför föreslĂ„r vi en berĂ€kningsmetod bestĂ„ende av tre tekniker: Gaussian beam-metoden, numeriska gradientmetoden och glesa berĂ€kningsnĂ€t. Gaussian beam-metoden anvĂ€nds för att undvika komplexiteten att approximera lösningen med direkta metoder. En gaussian beam Ă€r en asymptotisk lösning till vĂ„gekvationen lokaliserad runt strĂ„lar, dvs. bikarakteristikor till vĂ„gekvationen. Denna ansats lĂ„ter oss ersĂ€tta den ursprungliga partiella differentialekvationen med en uppsĂ€ttning ordinĂ€ra differentialekvationer, vilka kan lösas oberoende av Δ. BerĂ€kningen av funktionaler krĂ€ver berĂ€kningen av mycket oscillerande integraler. IdĂ©n bakom numeriska gradientmetoden Ă€r att Ă€ndra integrationskurvan för dessa integraler till en kurva i komplexa planet lĂ€ngs med vilken integranden inte oscillerar. Dessa senare integraler kan berĂ€knas med standardmetoder. BerĂ€kningskostnaden av funktionalernas statistiska mĂ„tt vĂ€xer mycket snabbt med problemets dimension. För att undkomma detta problem anvĂ€nder vi glesa berĂ€kningsnĂ€t. Med hjĂ€lp av dessa nĂ€t kan vi ignorera stora delar av gridpunkterna, samtidigt som konvergenshastigheten inte pĂ„verkas allt för negativt. Regulariteten hos dessa funktionaler i termer av de givna slumpmĂ€ssiga parametrarna och vĂ„glĂ€ngden Ă€r viktig för att metoden ska vara effektiv. Speciellt sĂ„ mĂ„ste derivatorna begrĂ€nsas uppifrĂ„n oberoende av Δ. Vi visar att funktionalerna har denna egenskap, trots att lösningen sjĂ€lv Ă€r mycket oscillerandeQC 20181114</p

    Uncertainty quantification for high frequency waves

    No full text
    We consider high frequency waves satisfying the scalar wave equation with highly oscillatory initial data represented by a short wavelength Δ. The speed of propagation of the medium as well as the phase and amplitude of the initial data is assumed to be uncertain, described by a finite number of independent random variables with known probability distributions. We introduce quantities of interest (QoIs) as spatial and/or temporal averages of the squared modulus of the wave solution, or its derivatives. The main focus of this work is on fast computation of the statistics of those QoIs in the form of moments like the average and variance. They are difficult to obtain numerically by standard methods, as the cost grows rapidly with Δ−1 and the dimension of the stochastic space. We therefore propose a fast approximation method consisting of three techniques: the Gaussian beam method to approximate the wave solution, the numerical steepest descent method to compute the QoIs and the sparse stochastic collocation to evaluate the statistics. The Gaussian beam method is introduced to avoid the considerable cost of approximating the wave solution by direct methods. A Gaussian beam is an asymptotic solution to the wave equation localized around rays, bicharacteristics of the wave equation. This setup allows us to replace the PDE by a set of ODEs that can be solved independently of Δ. The computation of QoIs includes evaluations of highly oscillatory integrals. The idea of the numerical steepest descent method is to change the integration path in the complex plane such that the integrand is non-oscillatory along it. Standard quadrature methods can be then utilized. We construct such paths for our case and show error estimates for the integral approximation by the Gauss-Laguerre and Gauss-Hermite quadrature. Finally, the evaluation of statistical moments of the QoI may suffer from the curse of dimensionality.  The sparse grid collocation method introduces a framework where certain large group of points can be neglected while only slightly reducing the convergence rate. The regularity of the QoIs in terms of the input random parameters and the wavelength is important for the method to be efficient.  In particular, the size of the derivatives should be bounded independently of Δ. We show that the QoIs indeed have this property, despite the highly oscillatory character of the waves.Vi studerar högfrekventa lösningar till den skalĂ€ra vĂ„gekvationen med mycket oscillerande begynnelsedata, given av en kort vĂ„glĂ€ngd Δ. Utbredningshastigheten i mediumet samt fasen och amplituden av begynnelsedatan antas vara osĂ€kra, och kunna beskrivas av ett Ă€ndligt antal oberoende slumpvariabler med kĂ€nda sannolikhetsfördelningar. Vi definierar funktionaler som lokala medelvĂ€rden av beloppskvadraten av lösningen, eller av dess derivator. Huvudfokus i detta arbete ligger pĂ„ att snabbt berĂ€kna statistiska mĂ„tt som medelvĂ€rde och varians av dessa funktionaler. Kostnaden att berĂ€kna funktionalerna med direkta metoder vĂ€xer snabbt med Δ−1. DĂ€rför föreslĂ„r vi en berĂ€kningsmetod bestĂ„ende av tre tekniker: Gaussian beam-metoden, numeriska gradientmetoden och glesa berĂ€kningsnĂ€t. Gaussian beam-metoden anvĂ€nds för att undvika komplexiteten att approximera lösningen med direkta metoder. En gaussian beam Ă€r en asymptotisk lösning till vĂ„gekvationen lokaliserad runt strĂ„lar, dvs. bikarakteristikor till vĂ„gekvationen. Denna ansats lĂ„ter oss ersĂ€tta den ursprungliga partiella differentialekvationen med en uppsĂ€ttning ordinĂ€ra differentialekvationer, vilka kan lösas oberoende av Δ. BerĂ€kningen av funktionaler krĂ€ver berĂ€kningen av mycket oscillerande integraler. IdĂ©n bakom numeriska gradientmetoden Ă€r att Ă€ndra integrationskurvan för dessa integraler till en kurva i komplexa planet lĂ€ngs med vilken integranden inte oscillerar. Dessa senare integraler kan berĂ€knas med standardmetoder. BerĂ€kningskostnaden av funktionalernas statistiska mĂ„tt vĂ€xer mycket snabbt med problemets dimension. För att undkomma detta problem anvĂ€nder vi glesa berĂ€kningsnĂ€t. Med hjĂ€lp av dessa nĂ€t kan vi ignorera stora delar av gridpunkterna, samtidigt som konvergenshastigheten inte pĂ„verkas allt för negativt. Regulariteten hos dessa funktionaler i termer av de givna slumpmĂ€ssiga parametrarna och vĂ„glĂ€ngden Ă€r viktig för att metoden ska vara effektiv. Speciellt sĂ„ mĂ„ste derivatorna begrĂ€nsas uppifrĂ„n oberoende av Δ. Vi visar att funktionalerna har denna egenskap, trots att lösningen sjĂ€lv Ă€r mycket oscillerandeQC 20181114</p
    corecore